The origin and degassing history of the Earth's atmosphere revealed by Archean xenon

نویسندگان

  • Guillaume Avice
  • Bernard Marty
  • Ray Burgess
چکیده

Xenon (Xe) is an exceptional tracer for investigating the origin and fate of volatile elements on Earth. The initial isotopic composition of atmospheric Xe remains unknown, as do the mechanisms involved in its depletion and isotopic fractionation compared with other reservoirs in the solar system. Here we present high precision analyses of noble gases trapped in fluid inclusions of Archean quartz (Barberton, South Africa) that reveal the isotopic composition of the paleo-atmosphere at ≈3.3 Ga. The Archean atmospheric Xe is mass-dependently fractionated by 12.9±2.4 ‰ u-1 (± 2σ, s.d.) relative to the modern atmosphere. The lower than today 129Xe excess requires a degassing rate of radiogenic Xe from the mantle higher than at present. The primordial Xe component delivered to the Earth's atmosphere is distinct from Solar or Chondritic Xe but similar to a theoretical component called U-Xe. Comets may have brought this component to the Earth's atmosphere during the last stages of terrestrial accretion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The xenon record of extinct radioactivities in the Earth.

Analyses of xenon from well gas rich in carbon dioxide reveal a large excess of radiogenic xenon-129 from the decay of extinct iodine-129. Smaller excesses observed in the heavy xenon isotopes are from fission. These results place narrow limits on any age difference between the earth and the oldest meteorites. The occurrence of excess radiogenic xenon-129 in well gas also suggests that any quan...

متن کامل

Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth's oxygenation.

The behavior of C, H, and S in the solid Earth depends on their oxidation states, which are related to oxygen fugacity (fO2). Volcanic degassing is a source of these elements to Earth's surface; therefore, variations in mantle fO2 may influence the fO2 at Earth's surface. However, degassing can impact magmatic fO2 before or during eruption, potentially obscuring relationships between the fO2 of...

متن کامل

The I - Pu - Xe age of the Moon - Earth system revisited

From iodine-plutonium-xenon isotope systematics, we re-evaluate time constraints on the early evolution of the Earth-atmosphere system and, by inference, on the Moon-forming event. Two extinct radioactivites (I, T1/2 = 15.6 Ma, and Pu, T1/2 = 80 Ma) have produced radiogenic Xe and fissiogenic Xe, respectively, within the Earth, which related isotope fingerprints are seen in the compositions of ...

متن کامل

Archean kerogen as a new tracer of atmospheric evolution: Implications for dating the widespread nature of early life

Understanding the composition of the Archean atmosphere is vital for unraveling the origin of volatiles and the environmental conditions that led to the development of life. The isotopic composition of xenon in the Archean atmosphere has evolved through time by mass-dependent fractionation from a precursor comprising cometary and solar/chondritic contributions (referred to as U-Xe). Evaluating ...

متن کامل

Coupled noble gas-hydrocarbon evolution of the early Earth atmosphere upon solar UV irradiation

Using a new photochemical model of the Earth’s early atmosphere, the relationship between noble gas photoionization and organic photochemistry has been investigated from the Archean eon to the present day. We have found that the enhanced UV emission of the young Sun triggered a peculiar atmospheric chemistry in a CH4-rich early atmosphere that resulted in the increased formation of an organic h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017